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Abstract A three-dimensional numerical investigation of flow field and heat transfer in sine-wave
crossed ducts is presented. Numerical simulations are carried out using a finite element procedure
based on an algorithm which shares many features with the SIMPLER finite-volume method, and
utilizes equal order pressure–velocity interpolation functions. Since the flow, after a short entrance
regime, reaches the fully developed condition, the computational domain can be reduced to a single
periodic element and periodic boundary conditions are assumed at the entrance, the exit and the
sides. The thermal performance and the frictional pressure losses of the crossed-corrugated plates
are investigated for different Reynolds number, from steady up to transitional regimes. The
evolution from steady to unsteady flow structure is detected and the influence of the unsteadiness
on heat transfer and on pressure drop is analysed. Simulations are performed for both air
ðPr ¼ 0:7Þ and water ðPr ¼ 7Þ as the flow medium and the dependence of Nusselt number on
Prandtl number is investigated.
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Nomenclature
a ¼ plate corrugation amplitude

[m]
A ¼ cross section [m2]
A0 ¼ surface parallel to inflow/outflow

boundaries [m2]
DH ¼ hydraulic diameter [m]
f ¼ friction factor [no unit]
h ¼ heat transfer coefficient [W/m2 K]
H ¼ channel average height: H ¼ 2a
k ¼ thermal conductivity [W/m K]
m ¼ correlation parameter

Nu ¼ hL=k ¼ f ðReÞ·Prm

n ¼ unit vector normal to a surface
[no unit]

Nu ¼ Nusselt number [no unit]
p ¼ pressure [Pa]
p̃ ¼ periodic component of pressure

[Pa]
Re ¼ Reynolds number [no unit]
t ¼ temperature [8C]
u, v, w ¼ velocity components in the (x, y, z)

directions [m/s]

v ¼ velocity vector [m/s]
x, y, z ¼ Cartesian coordinates [m]
Greek
w ¼ angle between corrugation and main

stream flow [8]
a ¼ overall pressure gradient in the flow

direction [Pa/m]
l ¼ wavelength of the corrugation

[m]
n ¼ kinematic viscosity [m2/s]
r ¼ density [kg/m3]
Subscripts and superscripts
b ¼ bulk
i ¼ inflow
low ¼ lower wall
o ¼ outflow
w ¼ wall
0 ¼ referring to the smooth plane

channel
up ¼ upper wall

¯ ¼ mean value
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Introduction
Corrugated plates are the elementary component in plate and frame heat
exchangers (PHE) and in compact regenerators and recuperators. In both types
of heat exchangers the metal plates are closely packed in a frame so that the
orientation of the corrugation between adjacent plates is non-aligned. This
configuration improves heat transfer by providing a larger effective surface
area and by generating a complex flow structure in the patterns between the
plates. Corrugations also strengthen the plates and give a high structural
stability due to the multitude of contact points.

Since the corrugation geometry determinates the thermohydraulic
performance of the exchanger, a large variety of corrugated profiles has been
investigated for many different cross-sections. In this paper, we focus on
sinusoidal corrugations, characterised by ratio l=a between the wavelength l
and the amplitude a of the sinusoid and by the angle w between the
corrugations and the main flow.

In the literature a certain amount of data is available for sine-wave ducts;
Okada et al. (1972); Focke et al. (1985); Gaiser and Kottle (1990) and Ciofalo et al.
(1996) have experimentally investigated performance of PHE for geometric
parameters included in a overall range of 3:5 , l=a , 14:25 and 08 , w ,
908:

Analytical solutions, based on the Galerkin integral method, for the velocity
and temperature distributions in straight double-sine ducts ðw ¼ 08Þ of
different aspect ratios have been presented by Ding et al. (1996).

The nature of the fluid flow in the furrows of crossed-corrugated ducts is
intrinsically three-dimensional. Therefore a detailed description of the whole
flow field is impossible to be obtained by analytical investigations and very
difficult to be reached experimentally. Thus, numerical analysis is a very
convenient tool to get the complete picture of the complex flow structures over
the domain. Furthermore, the flexibility of numerical methods in handling
changes in geometric parameters, Reynolds number or boundary conditions
helps the comprehension of the mechanisms affecting the flow and temperature
fields.

Stasiek et al. (1996) used the commercial code Flow3D to solve laminar and
turbulent flow equations in a Reynolds number range between 1000 and 10,000.
Blomerius et al. (1999) and Blomerius and Mitra (2000) carried out parametrical
investigations in the laminar and transitional flow regimes in order to detect
the onset of self-sustained flow oscillations and to analyse the influence of
unsteady flow structure on the heat transfer and pressure loss. A finite volume
code developed by the research group was used.

In the reported numerical investigations, the flow medium is air as they refer
to the application of the corrugated plates in regenerative and recuperative heat
exchangers. However, another main application of crossed-corrugated plates is
in chevron form of PHE which is the standard heat transfer equipment for
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liquid-food and chemical treatment and is increasingly becoming the standard
for closed-circuit cooling applications aboard ships, oil platforms, power station
and wherever a close temperature approach is required and weight or space is
at a premium (Kumar et al., 1998). In these cases a flow medium with a higher
Prandtl number than that of air is involved.

The parameters of the thermal field for fluids other than air are commonly
calculated with empirical correlations which identify a polynomial dependence
of the Nusselt number on Prandtl number. In this paper, we investigate and
compare the temperature fields and the distribution of the heat transfer
coefficient over the walls for both air and water.

Most common correlations predict, for a large variety of duct cross sections,
the dependence of the Nusselt on Pr1/3. In the majority of experimental
investigations on PHE the Prandtl exponent has variously taken as 0.5, 0.4 and
0.33 (Okada et al., 1972; Focke et al., 1985 and Muley and Manglik, 1997) related
to different geometric factors such as the corrugation profiles and their depth
and wavelength. The present computations show a more complex influence,
since the actual value of the exponent m is a function of Reynolds numbers.

The flow field and heat transfer are investigated in the laminar flow regime
for a geometry characterised by w ¼ ^458 and l=a ¼ 12 in the Reynolds
number range from 100 to 1000 for both air ðPr ¼ 0:7Þ and water ðPr ¼ 7Þ:
Particular focus has been made on the transition from steady to unsteady flow,
investigating how the flow structure affects the performance of the plate heat
exchanger.

Numerical simulations are carried out using a finite element procedure
described by Nonino and Croce (1997) and Nonino and Comini (1997; 1998). It is
based on an algorithm which utilizes an equal-order velocity interpolation for
velocity and pressure, and a sequential solution strategy with has features in
common with the well-known SIMPLER algorithm.

Statement of the problem
The angle between adjacent plates and between these and the main flow
direction (Figure 1(a)) has a decisive influence on the basic flow structure and
on the flow patterns. Focke and Knibbe (1986) used an electrode-activated pH
method to visualize the flow patterns and concluded that while for inclination
angles jwj . 608 the fluid mainly flows along the furrows on each plate, for
smaller angles ðjwj , 308Þ the fluid follows the main direction and corrugations
introduce only small deviations yielding zig-zag patterns. At w ¼ ^458 the two
types of trajectories coexist and lead to a highly complex structure that induces
the largest swirl generation on the flow in the furrows, the onset of
unsteadiness still in laminar flow regime and greater heat transfer
enhancement.

Blomerius and Mitra (2000) has identified the geometry with a dimensionless
wavelength l=a ¼ 12 and a dimensionless channel height H=a ¼ 2 as the most
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favourable one in a range of 8 , l=a , 16 and 1:5 , H=a , 2:5; on the basis
of the performance evaluation criteria of Webb (1981), at least in the two-
dimensional configuration ðw ¼ 908Þ: In fact it requires less heat transfer area
than all other investigated configurations considered under the constraint of
constant heat flux, mean flow rate, pumping power and mean temperature
difference.

Accounting for these results, we assumed the corresponding three-
dimensional configuration with w ¼ ^458: The corrugated surfaces are
described by the following equations:

zlowðx; yÞ ¼ 2a sinð2p=l·ðy 2 l=4ÞÞ ð1Þ

zupðx; yÞ ¼ a sinð2p=l·ðy 2 l=4ÞÞ þ a

Figure 1.
Sinusoidal cross-
corrugated plates

geometry. (a) overview w:
inclination angle; a:

amplitude of corrugation.
(b) computational grid
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Computational domain and boundary conditions
Corrugated ducts are characterised by a repetitive geometry in both
streamwise and transverse directions. After a short entrance regime, the flow
and the thermal fields become fully-developed and repeat themselves from
module to module in an identical or similar way. Therefore, it is possible to
reduce the numerical analysis to this single periodic element. Boundary
conditions are assumed at the entrance S1, at the exit S2, and on the sides S3 and
S4 of the computational domain (Figure 1(b)).

At the boundaries (S3, S4) standard periodic boundary conditions are
imposed on pressure, velocity and temperature. With incompressible flow
hypothesis, periodic boundary conditions can be assumed on the velocity also
at the inflow and outflow boundaries and similar conditions are carried out for
pressure p and temperature t.

The pressure p can be expressed as the sum of a linear term, accounting for
the pressure gradient a in the flow direction x, and a residual periodic term p̃:

p ¼ 2ax þ ~p ð2Þ

The periodicity of p̃ between boundaries S1 and S2 produces the following
condition (Nonino and Comini, 1998)

~poðy; zÞ ¼ ~piðy; zÞ ð3Þ

where i and o indicate the inlet and the outlet of the repetitive element.
Boundary conditions on velocity are assumed at the wall boundaries and at

the periodic boundaries and no-slip conditions at the wall boundaries

u ¼ v ¼ w ¼ 0 ð4Þ

and symmetric periodicity between S1 and S2

uoðy; zÞ ¼ uiðy; zÞ

voðy; zÞ ¼ viðy; zÞ

woðy; zÞ ¼ wiðy; zÞ

ð5Þ

Since conditions in equation (5) do not require any specification of the velocities
values at the inflow boundary, the pressure gradient a must be repeatedly
adjusted until the desired value of the average velocity on the cross-section A is
reached:

�u ¼
1

A

Z
A

u dA ð6Þ

A uniform temperature condition is assumed on the walls

t ¼ tw ¼ cost ð7Þ
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while the periodicity of thermal field between S1 and S2 is imposed on the
distribution of the dimensionless temperature T, which identically repeats
itself from module to module. It is defined as

T ¼
t 2 tw

tb 2 tw
ð8Þ

where tb is the bulk temperature defined as follows

tb ¼

Z
A0

jv·njt dAZ
A0

jv·njdA

ð9Þ

where A0 is the area of a surface parallel to the inflow/outflow boundaries and n
is the unit vector normal to it.

Therefore, the symmetric periodicity of T is expressed by the following
condition:

toðy; zÞ2 tw

ðtbÞo 2 tw
¼

tiðy; zÞ2 tw

ðtbÞi 2 tw
ð10Þ

Rearranging equation (10), the following expression is obtained

toðy; zÞ ¼ 1 þ
ðtbÞo 2 ðtbÞi

ðtbÞi 2 tw

� �
tiðy; zÞ2

ðtbÞo 2 ðtbÞi

ðtbÞi 2 tw
tw ð11Þ

where the T-bulk at inflow (tb)i and the difference of the T-bulk at the outflow
and inflow are unknown quantities. Therefore, in the solution process, the
difference in T-bulk is at first imposed, and then an iterative process is carried
on until convergence is reached for the value of (tb)i that verifies condition (10).

Numerical solution
In the solution procedure, the momentum, continuity and energy equations are
solved by the finite element algorithm described in Nonino and Croce (1997).
The velocity–pressure coupling is realized by a method which has many
features in common with the SIMPLER algorithm. At each new time step
ðn þ 1Þ; a pseudo-velocity field is obtained by the velocity field at the end of
previous time step (n ) by neglecting the gradient of pressure periodic
component in the momentum equations. Continuity is enforced on the pseudo-
velocity field, computing a tentative pressure from the resulting Poisson
equation, and the momentum equations are solved for the tentative velocity
field. By enforcing continuity again, the pressure corrections are found and
used to calculate the velocity corrections and consequently the new velocity
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field. Once the velocity field at time step ðn þ 1Þ has been found, the energy
equation can be solved before moving to the next time step.

The momentum, pressure and energy equations are solved in sequence,
following a fully segregated approach.

Since the space discretization of each equation is based on the Bubnov–
Galerkin method, no upwinding technique is introduced. The application of
Green’s theorem to the diffusion term of each equation yields the weak form
and allow the imposition of Neumann boundary conditions.

Flow field
For most of the computations, the elementary periodic domain has been
discretized by a structured grid consisting of 40 £ 40 £ 15 points (Figure 1(b)).
For the Reynolds¼1000, a finer grid of 70 £ 70 £ 25 nodes was required to
obtain grid-independent values at both Prandtl values. Using the wave
amplitude a as reference length, the dimensionless distance of the first node
from the walls varies from 1:43 £ 1024 to 2:85 £ 1021 and from 8:33 £ 1025 to
1:67 £ 1021 in the coarser and finer grid, respectively. The behaviour of the
flow is determined by the Reynolds number

Re ¼
�uDH

n
ð12Þ

and can be characterised by the friction factor f

f ¼
2DHa

r �u2
ð13Þ

both defined as a function of the hydraulic diameter DH and the average
velocity ū.

Calculations have been performed for six Reynolds numbers ranging from
100 to 1000. Two different flow regimes have been observed: steady flow for
Re , 300 and unsteady behaviour for Re . 300: For Re . 350 the flow
solution becomes time dependent and self-sustained oscillations in the flow
quickly lead to a semi-chaotic behaviour. For all the unsteady results the
Fourier analysis of the Nusselt number time series shows a complex behaviour,
with a power spectrum broadening at higher Re.

The different flow structures for a steady case ðRe ¼ 100Þ and for a transient
case ðRe ¼ 1000Þ have been analysed in detail and compared. The streamwise
and secondary velocities for both flow regimes are shown in Figure 2. For
Re ¼ 100 they show a steady regular flow, and two distinct streams following
the furrows between the corrugations of the plates that are easily recognisable
in the plot of the secondary velocity. On the contrary, for Re ¼ 1000 the
instantaneous flow field is almost chaotic, a considerable mixing occurs and
simple flow structures are not easily identifiable. From the three-dimensional
pathline maps of Figure 3(a), it is even more evident that at Re ¼ 100 the flow
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mainly follows the valleys of the corrugation of upper and lower walls. The
fluid through the inlet cross-section simply splits into two streams: the part
under the midplane flows along the valley of the lower plate while the part over
the midplane follows the valley of the upper plate. Only a minor part of fluid, in
a thin layer between the two major streams, crosses the crests of the
corrugations because of the dragging force of a stream on the other. It follows
the main flow direction in zig-zag patterns, promoting a little mixing. The flow
behaviour, thus, results from the superimposition of two simple channel flows.

On the other hand, at Re ¼ 1000 the crest crossing layer is strongly widened,
as shown by the time averaged streamlines in Figure 3(b), increasing the flow
mixing. Only the fluid very close to the walls follows the corresponding valleys,
while all the other streamlines produce criss-crossing interactions along the
channel. In order to detect the swirling motions that may be induced by these
interactions, the flow field have been analysed on three sequential cross

Figure 2.
Velocity vectors.

(a) streamwise velocity,
(b) secondary velocity
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sections orthogonal to two adjacent valleys (Figure 4(a)). The plot for the
steady case (Figure 4(b)) shows that, while at the bottom of the valley the flow
is undisturbed, a small swirl develops by the corrugated profile. Downwards,
the section reduces due to the sinusoidal waving of the upper wall and the swirl
grows until it occupies the whole channel section. The fluid draws longitudinal
vortexes with the axis of rotation aligned with the corrugations. The flow
structure is exactly the same in adjacent valleys and it can likewise be referred
to the corresponding sections on the upper plate.

The time filtered flow for Re ¼ 1000 (Figure 4) is characterized by a larger
vortex that appear in the core of the furrow already in the first cross section,
and time-dependent interaction between the furrows occurs. Thus, as can be
seen in the central slice Section 2 (Figure 4(c)), two different flow structures

Figure 3.
Streamlines. (a) steady
state ðRe ¼ 100Þ;
(b) transient time
averaged case
ðRe ¼ 1; 000Þ
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alternate between adjacent valleys: upper stream drag yields a global motion
from right to the left; such flow alternatively generates a bigger longitudinal
vortex or deeply penetrates in the furrow.

The transition from steady to unsteady flow implies a considerable increase
in friction losses owing to the stronger mixing produced by the interactions
between streams of different furrows and by the enlargement of the vortical
structures in the valleys themselves. The results in terms of friction factor f are

Figure 4.
Sequential cross sections

orthogonal to two
adjacent valleys. (a)

location; velocity vectors
for (b) Re ¼ 100 and (c)

Re ¼ 1000 time averaged
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reported in Figure 5. The reference value f0 is the friction factor for a fully-
developed laminar flow between two straight plates, f 0 ¼ 24=Re: The
transition is clearly detected by a significant change in the slope of curves. The
transition location is in good agreement with the results of Blomerius and Mitra
(2000). Slight deviations from Blomerius data at the beginning of the unsteady
region can be due to the uncertainty in the location and description of the
transition from the time periodic to semi-chaotic flow.

Temperature field and Prandtl number influence
The calculations for different Re have been performed for water ðPr ¼ 7Þ and
air ðPr ¼ 0:7Þ as flow medium. Since for incompressible flow the velocity field
is decoupled from the thermal one, only the temperature field is affected by the
change in Pr.

The mean Nusselt number

Nu ¼
hDH

k
¼ f ðRe; PrÞ ð14Þ

has been chosen as a significant measure of the overall heat-transfer
effectiveness of the heat exchanger.

Figure 5.
Friction factor versus
Reynolds number
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It is interesting to compare the temperature distributions adopting both flow
regime and fluid medium as criteria. In Figure 6, temperature distributions for
air on the slices parallel to the inlet or to the main flow are plotted in the steady
case ðRe ¼ 100Þ and in the transient flow case ðRe ¼ 1000Þ: In the first one
notes the presence of two stream tubes that are alternatively jointed and split
by the geometry of the corrugated plates: at the x=l ¼ 0 section they are
sharply separated, whereas at the downwash section they merge to be split
again by the central narrowing on x=l ¼ 0:5 section. On the contrary, for
Re ¼ 1000 the mixing and complex interactions of the streams in opposite
furrows lead to a much more homogenous temperature distribution over the
whole cross section and a consequent heat transfer enhancement.

The temperature field for water is qualitatively similar, but the sharper
gradient associated with the reduced thermal diffusivity allows a more clear
inspection of the flow structure. As an example, at Re ¼ 100 (Figure 7(a)) we
can easily identify the four main streams previously described: the two of them
running along the valley bottoms, and two of them crossing the crests and

Figure 6.
Temperature fields for

air ðPr ¼ 0:7Þ:
(a) sections orthogonal to

the main flow,
(b) sections parallel to the

main flow
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roughly following the main flow direction with a zig-zag pattern. At Re ¼ 1000
(Figure 7(b)), a nearly uniform core flow temperature is the clear effect of strong
mixing.

In analogy with its effect on friction factor, the transition from steady to
unsteady flow yields a considerable enhancement in heat transfer. The Nusselt
number is plotted as a function of Re in Figure 8. Again, the reference value Nu0

is the straight plain channel value, Nu0 ¼ 7:537:
As may be expected, the increase in Prandtl number yields an increase in the

heat transfer rate, due to the sharpening of temperature gradient. However, the
dependence on the Pr value is not obvious, since the flow structure is far from a
simple boundary layer-like condition.

Most common correlations report a dependence of the form

Nu ¼
hDH

k
¼ f ðReÞPrm ð15Þ

Figure 7.
Temperature fields for
water ðPr ¼ 7Þ:
(a) sections orthogonal to
the main flow,
(b) sections parallel to the
main flow
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with m not far from 1/3. However, for a steady laminar flow in a straight duct it
is known that Nu is independent of both Re and Pr, yielding a value of m ¼ 0:
In Figure 9 we plot the actual value of m computed from the present results as

m ¼

log
Nuair

Nuwater

� �

log
Prair

Prwater

� � ð16Þ

versus Reynolds number. It appears that at high Re the value of m is not far
from the usual value of 1/3, while it is considerably lower at Re , 300 and it
has a smooth variation in the region of steady/unsteady transition. Thus, the
effect of Pr is more significant for the unsteady regime, characterized by higher
heat transfer effectiveness.

Conclusions
A detailed analysis of flow and heat transfer in plate and frame heat
exchangers has been carried out for two different operating fluid, air and water.
The computations showed two distinct flow regimes, a steady one with a small
mixing layer between the lower and upper streams, and an unsteady one, with
longitudinal vertical structures leading to strong mixing. As a consequence,

Figure 8.
Nusselt number versus

Reynolds number
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relatively small heat transfer enhancement was achieved for low Reynolds
numbers, while a dramatic increase in Nusselt number is obtained in the
unsteady flow regime, with the drawback of a corresponding increase in
friction factor.

The analysis of the influence of the fluid properties shows that it is not
possible to identify a single correction factor to take into account the variation
of the Prandtl number, thus requiring a numerical evaluation of its effect. The
dependence of Nu on Pr is, in fact, a function of Re, and is stronger in the
unsteady region, approaching the typical effect observed in turbulent flows.
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